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Clinical research should conform to high standards of ethical and
scientific integrity, given that human lives are at stake. However,
economic incentives can generate conflicts of interest for inves-
tigators, who may be inclined to withhold unfavorable results
or even tamper with data in order to achieve desired outcomes.
To shed light on the integrity of clinical trial results, this paper
systematically analyzes the distribution of P values of primary
outcomes for phase II and phase III drug trials reported to the
ClinicalTrials.gov registry. First, we detect no bunching of results
just above the classical 5% threshold for statistical significance.
Second, a density-discontinuity test reveals an upward jump at
the 5% threshold for phase III results by small industry sponsors.
Third, we document a larger fraction of significant results in phase
III compared to phase II. Linking trials across phases, we find that
early favorable results increase the likelihood of continuing into
the next phase. Once we take into account this selective continu-
ation, we can explain almost completely the excess of significant
results in phase III for trials conducted by large industry sponsors.
For small industry sponsors, instead, part of the excess remains
unexplained.

clinical trials | drug development | selective reporting | p-hacking |
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The evidence produced in clinical trials is susceptible to many
kinds of bias (1–3). While some such biases can occur acci-

dently, even unbeknownst to the study investigators, other biases
may result from strategic behavior of investigators and sponsors.
In addition to the public value of improving medical treatments,
the information obtained through clinical trials is privately valu-
able for the sponsoring pharmaceutical companies that aim to
demonstrate the safety and efficacy of newly developed drugs—
the prerequisite for marketing approval by authorities such as
the US Food and Drug Administration (FDA). Given the size-
able research and development costs involved (4) and the lure of
large potential profits, investigators can suffer from conflicts of
interest (5–8) and pressure to withhold or “beautify” unfavorable
results (9, 10) or even fabricate and falsify data (11).

In the 1990s and 2000s, many medical scholars began call-
ing for more transparency in clinical research (12), following
public outcry over alarming evidence of selective publication of
trial results (13–15), cases of premature drug approvals (16),
and allegations of data withholding (17). As a response to these
concerns, policymakers established publicly accessible registries
and result databases (18, 19), such as ClinicalTrials.gov (20,
21) (see SI Appendix for more details on the ClinicalTrials.
gov registry and the legal requirements for reporting trial
results).

ClinicalTrials.gov now contains sufficient data to allow for
a systematic evaluation of the distribution of reported P val-
ues. Our analysis builds on and develops the methods proposed
in the literature that investigates “p-hacking,” publication bias,
and the “file-drawer problem” (22, 23) for academic journal
publications in a number of fields, ranging from life sciences
(24) to psychology (25, 26), political science (27, 28), and
economics (29–31).

Given the escalation of stakes as research progresses through
phases, clinical trials are particularly well suited to detect how
economic incentives of sponsoring parties drive research activity
(32–34) and reporting bias. Economic incentives in clinical trials
may depend on the size of the sponsoring firm (32). Compared
to larger companies, smaller firms may have more to gain by mis-
reporting results—and less reputation to lose if they are exposed.
In other contexts, such reputational concerns have been found to
vary by firm size (35, 36) or by academic prominence (37).

While the previous literature focused mostly on scientific pub-
lications in academic journals for which prepublication research
results are typically not observable, ClinicalTrials.gov allows us
to observe results from clinical trials in earlier research phases.
Thus, we are able to follow the evolution of research results
over time and construct counterfactuals not available in pre-
vious work. By linking trials across different phases of clinical
research, we are able to quantify the effect of the incentives to
selectively continue experimental research depending on early
stage results.

Methods and Results
Our focus is on preapproval interventional superiority studies
on drugs carried out as phase II and phase III trials. Trials in
phase II investigate drug safety and efficacy, typically with a
small sample of experimental subjects. Phase III trials investigate
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Statistical significance in clinical trials is a key prerequisite
for marketing approval of new drugs. The large economic
payoffs at stake might undermine investigators’ ethical obli-
gations and incentivize manipulation of results. This study
systematically evaluates the integrity of results reported to
the largest registry of clinical trials, ClinicalTrials.gov. Con-
trary to what has been documented in previous studies of
academic publications across a number of disciplines, our anal-
ysis does not detect evidence for widespread manipulation of
results to clear the 5% threshold for statistical significance.
However, we find that the increase in the share of signifi-
cant results from phase II to phase III can be explained only
partially by investigators’ incentives to selectively continue
experimentation following favorable early results.

Author contributions: J.A., C.D., and M.O. designed research, performed research,
analyzed data, and wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: A complete replication package is available at the Harvard Dataverse
(https://doi.org/10.7910/DVN/NBLYSW).y
1 J.A., C.D., and M.O. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: marco.ottaviani@unibocconi.it.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1919906117/-/DCSupplemental.y

First published June 2, 2020.

13386–13392 | PNAS | June 16, 2020 | vol. 117 | no. 24 www.pnas.org/cgi/doi/10.1073/pnas.1919906117

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
28

, 2
02

1 

http://orcid.org/0000-0002-7035-1565
http://orcid.org/0000-0002-4444-5541
http://orcid.org/0000-0002-0943-162X
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919906117/-/DCSupplemental
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.7910/DVN/NBLYSW
mailto:marco.ottaviani@unibocconi.it
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919906117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919906117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1919906117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1919906117&domain=pdf


www.manaraa.com

EC
O

N
O

M
IC

SC
IE

N
CE

S
M

ED
IC

A
L

SC
IE

N
CE

S

efficacy, while monitoring adverse effects on a larger sample of
individuals, and play a central role in obtaining approval to mar-
ket the drug from regulators such as the FDA. To facilitate the
analysis, we transformed the P values into test statistics, suppos-
ing that they would all originate from a two-sided Z test of a null
hypothesis that the drug has the same effect as the comparison.
This transformation allowed us to investigate both the overall
shape of the distribution and the region around the thresholds
for statistical significance more easily (see Materials and Methods
and SI Appendix for further information on the data and the P–Z
transformation).

The Distribution of Z Scores: Irregularity Tests. Fig. 1 displays den-
sity estimates of the constructed z statistics for tests performed
for primary outcomes of phase II and phase III trials. We present
results for all trials in Fig. 1A and subsequently provide the
breakdown by affiliation of the lead sponsor: nonindustry (NIH,
US federal agencies, universities, etc.) in Fig. 1B, top-10 industry
(the 10 pharmaceutical companies in the sample with the largest
revenues in 2018; SI Appendix, Table S1) in Fig. 1C, and small
industry (the remaining smaller pharmaceutical companies)
in Fig. 1D.

Next, we diagnosed three possible irregularities in the distri-
bution of z statistics of trials, at or above the 5% significance
threshold, corresponding to a z statistic of 1.96. Further technical
details and robustness checks are gathered in SI Appendix.
Spike in the Density Function Just Above 1.96. First, we detected
no spikes in the densities (or discontinuities in the distribu-
tion functions) just above 1.96, the salient significance threshold.
Such spikes, indicating that results are inflated to clear the signif-
icance hurdle, have been documented in previous studies of z dis-
tributions for tests in academic publications across life sciences
(24), as well as economics (31) and business studies (39). Thus,
the more natural distribution of z scores from ClinicalTrials.
gov displays more integrity compared to results reported for
publications in scientific journals. This difference may partially
be explained by the absence of the additional layer of editorial
selection, which may be based also on the statistical significance

of presented results. This first finding suggests that registered
results are not inflated at the margin just to clear the significance
threshold.
Discontinuity of the Density Function at 1.96. Second, we investi-
gated the presence of a discontinuity in the density of z statistics
with a test that relies on a simple local polynomial density estima-
tor (38). The densities for phase II trials were smooth and did not
show a noteworthy upward shift at the 1.96 threshold in all cases.
In contrast, the densities of z statistics for industry-sponsored
(both small and top 10) phase III trials displayed a break at 1.96.
The break was statistically significant only for phase III trials
undertaken by small pharmaceutical companies (Fig. 1D), with
a persistent upward shift to the right of the threshold, indicating
an abnormal amount of significant results. This pattern is sugges-
tive of “selective reporting” i.e., strategic concealment of some
nonsignificant results.

The different patterns observed between large and small
industry sponsors (Fig. 1 C and D) were robust across a wide
range of alternative ways to define “large” sponsors (SI Appendix,
Fig. S1). Moreover, we found a similar discontinuity for phase
III trials by small industry sponsors when transforming P val-
ues to test statistics of a one-sided instead of a two-sided test
(SI Appendix, Fig. S2).
Excess of Significant Results in Phase III Compared to Phase II.
Third, Fig.1 indicates an excess of favorable results over the
1.96 threshold in phase III compared to phase II. More favor-
able results were more likely to be observed in phase III than in
phase II. The phase III distribution of z statistics stochastically
dominates the phase II distribution. Dominance is particularly
strong for industry-sponsored trials (Fig. 1 C and D). This pat-
tern appears suspicious, but it is not as alarming as a spike at the
significance threshold. While only 34.7% of phase II trial results
by nonindustry sponsors fell above 1.96 (and 34.8%, respectively,
for phase III, a difference that is not statistically significant), the
fraction of significant results rose to 45.7% in phase II and 70.6%
in phase III for industry-sponsored trials.

Recall that the analysis above considered only P values asso-
ciated to primary outcomes of trials. These results constitute

Fig. 1. Comparison of phase II and phase III densities of the z score and tests for discontinuity at z = 1.96, depending on the affiliation of the lead sponsor.
Density estimates of the constructed z statistics for primary outcomes of phase II (dashed blue lines) and phase III (solid gray lines) trials are shown. The
shaded areas are 95% confidence bands, and the vertical lines at 1.96 correspond to the threshold for statistical significance at the 0.05 level. Sample
sizes: n = 3, 953 (phase II), n = 3, 664 (phase III) (A); n = 1, 171 (phase II), n = 720 (phase III) (B); n = 1, 332 (phase II), n = 1, 424 (phase III) (C); and n = 1, 450
(phase II), n = 1, 520 (phase III) (D). Significance levels for discontinuity tests (38) are shown. **P < 0.05; ***P < 0.01. Exact P values are reported in
SI Appendix, Table S2.
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the main measure for success of the treatment being tri-
aled, for both the investigators themselves and the evaluating
authorities. The densities of z scores from lower-stake sec-
ondary outcomes for all groups of sponsors and both phases
did not display any meaningful discontinuity at the signifi-
cance threshold (SI Appendix, Fig. S3 and Table S5). Moreover,
for secondary outcomes, the excess of significant results from
industry-sponsored trials in phase III relative to phase II was
much smaller compared to the distribution for primary out-
comes. We found irregularities only for higher-stake primary
outcomes, suggesting that incentives of reporting parties play
a role.

Linking Trials across Phases: Controlling for Selective Continuation.
The FDA focuses mainly on phase III results when deciding
about marketing approval, a decision with major financial conse-
quences for pharmaceutical companies. Given these incentives,
the observed excess of significant results, particularly in the
group of industry-sponsored phase III trials, could be inter-
preted as evidence of tampering (p-hacking) or nondisclosure
of negative results (selective reporting). However, this conclu-
sion would be premature without first carefully examining the
dynamic incentives underlying clinical research, as we set out
to do.

An alternative explanation for the excess of significant results
in phase III relative to phase II is the selective continuation
of drug testing to the next phase only when initial results are
sufficiently encouraging. Selective continuation saves on costly
clinical research and can thus even be socially desirable, as long
as such economic considerations do not distort research activ-
ity away from important, but costly, projects (8). Also, from
an ethical viewpoint, no further trials with volunteer patients
should be conducted when a drug is highly unlikely to have a
positive impact. Time and resources should be devoted to more
promising projects instead. We outline a model of the sponsor’s
continuation decision in Materials and Methods.

To identify the impact of selective continuation, we developed
a procedure to link phase II and phase III trials in our dataset
based on the main intervention (i.e., the tested drug or combi-
nation of drugs), the medical condition to be treated, and the
timing. This procedure is illustrated in Fig. 2. A given phase II
trial may either 1) have no corresponding phase III trial with the
same intervention and same condition; or 2) have one or mul-
tiple matches in phase III. In the latter case, we considered the
phase II trial as continued into phase III. The resulting linked
data, which we make available to the research community (40),
is a key input in the methodology we developed to estimate a
selection function capturing selective continuation for industry-
sponsored trials.

Following our model of the firm’s continuation decision, we
estimated the selection function with a logistic regression of a
dummy variable indicating if there is at least one match among
the phase III trials in the database (regardless of whether phase
III results are reported or not) on the phase II z score. We con-
trolled for adjustment for multiple hypothesis testing, a flexible
time trend, and other covariates that might influence the per-
ceived persuasiveness of phase II results (square root of overall
enrollment to each trial as proxy for power of the statistical tests
and active comparator vs. placebo) or the economic incentives
to undertake research (fixed effects for the treated condition) on
top of the z score; see Materials and Methods for the exact spec-
ification. The predicted values of this selection function can be
interpreted as the probability that a drug progresses to phase III,
conditional on the information available at the end of phase II,
consisting of the phase II z score and other covariates.

In most cases, very low P values are no longer reported pre-
cisely, but only as being below the thresholds 0.001 or 0.0001
(e.g., P < 0.001 instead of P = 0.0008). Therefore, we estimated
the continuation probability separately for those two cases by
including dummies for “z > 3.29” (corresponding to the P value
being reported as P < 0.001) and “z > 3.89” (corresponding to
P < 0.0001) in the specification of the selection function.

Fig. 2. Linking phase II and phase III trials. We considered a phase II trial as continued if we found at least one phase III trial registered in the database
(regardless of whether associated results are reported or not) fulfilling all three criteria (intervention, condition, and timing). See SI Appendix for a more
detailed description of the linking procedure.

13388 | www.pnas.org/cgi/doi/10.1073/pnas.1919906117 Adda et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
28

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919906117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919906117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1919906117


www.manaraa.com

EC
O

N
O

M
IC

SC
IE

N
CE

S
M

ED
IC

A
L

SC
IE

N
CE

S

Table 1 displays the estimated logit coefficients for all industry
sponsors (column 1) and for small and top-10 industry spon-
sors separately (columns 2 and 3, respectively). Fig. 3 illustrates
the estimated selection functions graphically. The solid green
line shows the predicted continuation probability as function of
the phase II z score. A higher z score in phase II significantly
increases the probability of continuation to phase III. The lighter
dotted and darker dashed lines show the predictions when con-
sidering only trials conducted by small sponsors or, respectively,
the 10 largest industry sponsors. The estimated continuation
probabilities suggest that larger companies continue research
projects more selectively. The overall share of matched trials is
lower for large industry sponsors, captured by the downward shift
of the selection function.

In the context of our model of the firm’s continuation deci-
sion, the continuation probability is negatively associated with
the opportunity cost of continuing a specific project. On aver-
age, this cost can be expected to be greater for large sponsors
with many alternative projects. This interpretation is in line with
findings from previous studies arguing that managers of larger
firms with multiple products in development have less private
costs attached to terminating unpromising research projects and,
thus, are more efficient (32).

In SI Appendix, Table S6, we report estimates of the same
logistic model when considering the phase II z scores associ-
ated to secondary outcomes instead of primary outcomes. The
coefficients related to the z score are much smaller in magni-
tude, and most of the coefficients are not statistically significant,
notwithstanding the much larger sample size. This finding con-
firms that the evaluation of a trial’s success, and therefore
also selective continuation, is based predominantly on primary
outcomes.

Decomposition of the Difference in Significant Results between
Phase II and Phase III. Under the assumption that, conditional
on our control variables, the expected z statistic in phase III
equals the z of a similar phase II trial, we can construct a hypo-
thetical phase III distribution for primary outcomes accounting
for selective continuation. To do so, we estimated the kernel
density of phase II statistics (for now, disregarding z > 3.29
and z > 3.89) reweighting each observation by the continuation
probability predicted by our selection function, given the charac-
teristics of the phase II trial. The resulting counterfactual density
can be compared to the actual phase II and phase III densi-
ties, which we estimated using a standard unweighted kernel
estimator.

Since the selection function is increasing in the phase II z
score, the counterfactual z density rotates counter-clockwise,
increasing the share of significant results (SI Appendix, Fig. S4).
To calculate the overall share of significant results under the
hypothetical regime, we combined the estimated densities with
the number of z > 3.29 and z > 3.89 results predicted from the
selection functions and renormalize to one.

Based on this construction, we decomposed the difference in
the share of significant results in phase II and phase III into
two parts: selective continuation and an unexplained residual. As
illustrated in Fig. 4A and SI Appendix, Table S7, when we con-
sidered all industry-sponsored trials, selective continuation, i.e.,
economizing on the cost of trials that are not promising enough,
accounted for more than half of the difference, leaving 48.5% of
the difference unexplained.

Next, we repeated the estimation procedure separately for tri-
als sponsored by large and small industry. The difference in the
share of significant results between phase II and phase III was
slightly larger for trials by small sponsors (21.9 percentage points
for top-10 industry vs. 25.8 percentage points for small industry).
For trials sponsored by the 10 largest companies, the differ-
ence between the actual share of significant phase III results
and the share predicted by selective continuation from phase II
shrank to 3.4 percentage points and was no longer statistically
significant. Thus, for top-10 industry sponsors, our methodology
suggests no indication of selective reporting or potential tamper-
ing: Selective continuation can explain almost the entire excess
share of significant results in phase III trials compared to phase
II trials.

A different picture emerged for small industry sponsors.
According to the selection function estimated in Table 1 and
displayed in Fig. 3, small sponsors were much more likely to
proceed to phase III than large sponsors, especially following
phase II trials with relatively low z statistics. Hence, for small
sponsors, selective continuation was less pronounced and can
only account for less than one-third of the excess share of sig-
nificant results in phase III trials compared to phase II trials.
Phase III results actually reported by small sponsors appeared
to be much more favorable than predicted by the selection func-
tion; for these sponsors, we are left with a statistically significant
unexplained residual of 18.4 percentage points, as displayed
in Fig. 4A.

As illustrated by Fig. 4 B and C, these different patterns
between large and small industry sponsors are robust across a
wide range of alternative ways to define “large” sponsors. For
small sponsors (Fig. 4B), the share of the explained difference

Table 1. Estimates of logit selection function for selective continuation, based on primary outcomes

(1) (2) (3)
Sponsor All industry Small industry Top-10 industry

Phase II z score 0.331*** (0.0793) 0.266*** (0.100) 0.404*** (0.130)
Dummy for phase II z score reported as “z> 3.29” 1.063*** (0.226) 0.756** (0.329) 1.750*** (0.373)
Dummy for phase II z score reported as “z> 3.89” 1.232*** (0.255) 0.787*** (0.285) 1.643*** (0.446)
Mean dependent variable 0.296 0.344 0.246
P value Wald test (2) = (3) 0.00480 0.00480
Controls Yes Yes Yes
MeSH condition fixed effects Yes Yes Yes
Completion year fixed effects Yes Yes Yes
Observations 3,925 2,017 1,908
No. of trials 1,167 674 493

Unit of observation: trial-outcome; included controls: square root of the overall enrollment, dummy for placebo comparator, and dummy for multiple
hypothesis testing adjustment. See Materials and Methods for the exact specification. Categories for condition fixed effects are based on Medical Subject
Headings (MeSH) terms associated to the trials (21); for more details, see SI Appendix. “P value Wald test (2) = (3)” reports the P value of a Wald test of the
null hypothesis of joint equality of the coefficients in the first three rows and the constant between columns 2 and 3. SEs in parentheses are clustered at the
MeSH condition level; significance levels (based on a two-sided t-test) are indicated. **P < 0.05; ***P < 0.01.
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Fig. 3. Predicted continuation probability as function on the phase II z
score, depending on affiliation of lead sponsor. Predictions are based on
the estimated logit selection functions for selective continuation; see Table
1 for the estimated coefficients. All control variables are fixed at their mean
values. The shaded areas are 95% confidence bands.

ranges between 19% and 44% with the majority of results being
very close to the estimate in our main specification (29%). Also,
for different definitions of large sponsors (Fig. 4C), the estimates
are quite close to the result from our main specification (85%),
ranging between 57% and 101%.

These findings are consistent with our earlier observation that
small industry is the only group of sponsors for which the phase

III z density exhibits a statistically significant discontinuity at the
1.96 threshold. Along the same lines, a recent evaluation of com-
pliance with FDA requirements for reporting of trial results to
ClinicalTrials.gov finds that compliance improves with sponsor
size (41).

Discussion and Conclusion
Overall, the distribution of z scores from ClinicalTrials.gov does
not indicate widespread manipulation of results reported to the
registry. Given the increasing adoption of randomized control
trials across life and social sciences, our findings speak in favor
of setting up repositories similar to ClinicalTrials.gov in these
other domains to monitor results and improve the credibility of
research.

As we show, to correctly interpret the distribution of research
results, it is important to understand the sequential nature of
research and its interplay with economic incentives. Although
phase III trials appear to deliver too many positive results, we
can explain a large part of this excess of favorable results by
linking them to phase II outcomes and accounting for selective
continuation.

However, we find that selective continuation cannot explain
fully the high number of significant results in phase III tri-
als sponsored by smaller firms. For the same group of trials,
we also identified a discontinuity in the density at the classi-
cal significance threshold. These patterns suggest that enforcers
of registration should pay particular attention to smaller indus-
try sponsors, for which reputational concerns may be less
consequential—a channel that should be investigated more
thoroughly by future work.

In conclusion, our exploratory findings indicate that current
levels of regulation and enforcement are not sufficient to fully

Fig. 4. (A) Selection-based decomposition of the difference in significant results from primary outcomes between phase II and phase III, depending on
affiliation of lead sponsor (top-10 revenues criterion). Phase II and III lines represent the shares of trials with a P value below 5% (or, equivalently, a z score
above 1.96). The green segments represent the parts of the differences explained by selective continuation, based on counterfactuals constructed from the
phase II distribution. For precise numbers and sample sizes, see SI Appendix, Table S7. Significance levels for the differences (based on a two-sided t-test) are
indicated. **P < 0.05; ***P < 0.01. (B and C) Histograms of the percentage share of the difference in the share of significant results between phase III and
phase II explained by selective continuation across different definitions for large vs. small industry sponsors. The shares correspond to the green area in A
divided by the sum of the green and the gray areas. The sample of industry-sponsored trials is split according to 56 different definitions of large sponsors.
These definitions are obtained by ranking sponsors by their 2018 revenues, volume of prescription drug sales in 2018, research and development spending
in 2018, and the number of trials reported to the registry. For each of these four criteria, 14 different definitions of “large vs. small” were created: top seven
vs. remainder, top eight vs. remainder, and so on, up to top 20 vs. remainder. Further details are provided in SI Appendix.
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discipline reporting. To evaluate opportunities for reform, poli-
cymakers might want to weigh the ex post information benefits of
mandatory registration against the reduced incentives of investi-
gators to undertake clinical trials (42–46). An empirical quantifi-
cation of this chilling effect could serve as an important input for
a social cost–benefit analysis for tightening current rules.

Materials and Methods
Database for Aggregate Analysis of ClinicalTrials.gov. The Database for
Aggregate Analysis of ClinicalTrials.gov (AACT) was launched in Septem-
ber 2010 to allow for free bulk download of all of the data contained
in the ClinicalTrials.gov registry (19–21). The project is administered by
the Clinical Trials Transformation Initiative, a partnership of the FDA and
Duke University with the aim of improving quality and efficiency of clin-
ical trials. The database, which is updated daily and directly accessible in
the cloud, contains over 40 subtables with information on timing, condi-
tions, interventions, facilities, locations, sponsors, investigators, responsible
authorities, eligible participants, outcome measures, adverse events, results,
and descriptions of trials.

The trials in the database cover a wide range of different diseases,
interventions, and study designs. Hence, also, the reported results are very
diverse in nature. In contrast to a meta-analysis on a specific disease or treat-
ment, which typically uses only a narrowly defined subgroup of the dataset,
we analyzed the largest possible portion of the overall data. Given the
aggregate level of our analysis, rather than using the estimated coefficients,
we focused on P values, the only measure reported uniformly and compa-
rably for many trials, independent of their characteristics and the statistical
method used for the analysis.

This study is based on the AACT data available on August 15, 2019. Over
the last 2 y, we obtained similar results in earlier drafts of this paper based
on less data. We concentrated on phase II and phase III interventional (as
opposed to observational) superiority (as opposed to noninferiority) stud-
ies on drugs (as opposed to medical devices and others) which report at
least one proper P value for a statistical test on a primary outcome of
the trial.

We dropped the trials of the sponsor Colgate Palmolive, which reported P
values exactly equal to 0.05 for 137 out of its 150 results. We attributed these
exact P values of 0.05 to a reporting mistake; clearly, these were intended to
be reported as significant results with P value lower than or equal to 0.05.
Leaving Colgate Palmolive’s results in the sample would lead to a substantial
spike at z = 1.96, which could be wrongly interpreted as evidence for p-
hacking. Moreover, we dropped the trial with the identifier NCT02799472,
as it reported 211 P values for primary outcomes and would therefore have
much more impact than all other trials (average number of P values for
primary outcomes per trial: 2.5; median: 1).

Altogether, we obtained a sample of 12,621 P values from tests per-
formed on primary outcomes of 4,977 trials. These single P values consti-
tuted the units of observation for our analysis. As a consequence of the
FDA Amendments Act, the largest part of our results data pertains to trials
conducted after 2007.

P –z Transformation. We transformed the P values taken from the AACT
database to corresponding z statistics by supposing that all P values would
originate from a two-sided Z test of a null hypothesis that the drug has the
same effect as the comparison. Given that under the null hypothesis, this
statistic is normally distributed, we have the one-to-one correspondence
z =−Φ−1( p

2 ), where z is the absolute value of the test statistic, and Φ−1

is the inverse of the standard normal cumulative distribution function. This
transformation facilitates both the graphical analysis and the identification
of discontinuities at the significance threshold, given that the z density is
close to linear around the significance threshold, whereas the corresponding
p density is highly nonlinear in this range.

Density Discontinuity Tests. We implemented tests of discontinuity in the
z-score density at the z = 1.96 significance threshold based on the state-
of-the-art procedure developed by Cattaneo et al. (38). This test builds on
a local polynomial density-estimation technique that avoids prebinning of
the data. More details on the testing procedure and supplementary results
can be found in SI Appendix.

Linking Phase II and Phase III Trials. To analyze selective continuation from
phase II to phase III, we linked phase II and phase III trials in our dataset,
based on the main intervention, the medical condition to be treated, and
the timing.

We read one by one the protocols for all of the phase II trials in the
dataset for which at least one P value was reported. We considered only
phase II trials that were completed before the end of December 2018 to
allow for enough time such that a follow-up phase III trial could have been
registered by August 2019. From the protocols, we determined the main
experimental intervention(s), i.e., the main drug or combination of drugs
whose efficacy and safety was to be established, for 1,773 phase II trials.

We considered a phase II trial as continued if we could link it to at least
one phase III trial; that is, if we found at least one phase III trial registered
in the database (regardless of whether associated results were reported or
not) fulfilling all of the following criteria:

1) Intervention: All drugs being part of at least one of the determined main
interventions of the phase II trial appear as listed interventions in the
phase III trial. This is either with exactly the same name or with a synonym
which the reporting party states to refer to the same drug.

2) Condition: All of the MeSH conditions (21) associated to the phase II trial
are also associated to the phase III trial.

3) Timing: The start date of the phase II trial was before the start date of
the phase III trial.

For more details on the linking procedure, see SI Appendix.

Selection Function. Denote by I2 a vector collecting the relevant information
pertaining to the clinical trial at the end of phase II. It contains the z score,
zPh2, and other variables describing the circumstances of the trial (such as
sample size to proxy for statistical power). If the sponsor firm decides to
stop the development of the drug, it obtains a payoff of V(I2) + η. In case
of continuation into phase III, the firm pays a development cost c + η. The
idiosyncratic payoff and cost shocks η and η are only observable to the firm,

but not to the econometrician. The future payoff is denoted VPh3 and is
increasing in the phase III z score, which is uncertain at the time of the deci-
sion to set up a phase III trial. The firm has an expectation on the distribution
of the z score, based on the information available in I2. The decision of the
firm is thus,

VPh2(I2) = max
[
V(I2) + η;−c− η+ δEz3|I2 VPh3(z3)

]
,

where δ is the discount factor. Assuming that the idiosyncratic shocks η
and η are both independent and identically extreme value distributed, the
probability of undertaking a phase III trial is a logistic function (47).

Prob(continuation) =
exp(−c + δEz3|I2 VPh3(z3))

exp(V(I2)) + exp(−c + δEz3|I2 VPh3(z3))

= logistic(I2).

Following this model, we use a logistic regression to estimate a selection
function that captures selective continuation for industry-sponsored trials.
In the sample of phase II z scores, restricted as explained in the section
above, we estimate the logistic model

continuationi = logistic [α+ β0(1−D1i −D2i)z
Ph2
i + β1D1i

+β2D2i + x′i γ +φci + τti + εi
]
,

where continuationi is a dummy variable which results from our linking of
trials across phases and equals one if there is at least one phase III trial
matched to a phase II trial to which z-score i belongs (regardless of whether
results are reported), and zPh2

i is the phase II z score associated to a primary
outcome. D1i and D2i are dummy variables for a statistic to be reported
as z> 3.29 or z> 3.89, respectively. As explained above, those cases are so
frequent that we treat them separately.

Moreover, the vector xi gathers further control variables which might
influence the perceived persuasiveness of phase II results or the economic
incentives to carry on with the research on top of the z score. These include
the square root of the overall enrollment to each trial (as proxy for the
power of the tests), a dummy indicating whether there was a placebo
involved in the trial (as opposed to an active comparator), and a dummy
indicating whether the P value is explicitly declared as adjusted for multi-
ple hypothesis testing. For the last variable, the baseline corresponds to no
adjustment of the critical value of the testing procedure or no information
provided. We codified this variable manually from the P-value descriptions;
only 2.9% of the relevant observations are explicitly adjusted.

To account for potential systematic differences across drugs for the treat-
ment of different kinds of conditions, we included condition fixed effects
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φc. For this purpose, we assigned each trial in one of the 15 largest cate-
gories of conditions, based on the MeSH terms determined by the curators
of the database (21). For more details, see SI Appendix.

As registration of trials and reporting of results occurs often with a sub-
stantial time lag, we also controlled for a flexible time trend by including
completion year fixed effects τt .

Summing up, zPh2, D1, D2, x, and φc correspond to I2, the information rel-
evant for the continuation decision at the end of phase II, in the model
above. The predicted values ̂continuationi can be interpreted as the proba-
bility of a drug moving to phase III conditional on the phase II z score (and
other informative covariates observable at the end of phase II).

Kernel Density Estimation. Let Z1, Z2, . . . , Zn be the sample of z scores in a
given group of trials. To estimate the density, we use the standard weighted
kernel estimator

f̂(z) =
1

W

n∑
i=1

wi

h
K
(

z− Zi

h

)
,

where W =
∑n

i=1 wi , K(·) is the Epanechnikov kernel function, and h is the
bandwidth which we choose with the Sheather–Jones plug-in estimator (48).
To estimate the actual phase II and phase III densities, we set all weights wi

equal to one. To construct the hypothetical densities controlled for selec-
tive continuation, we estimated the kernel density of the phase II statistics,
using the predicted probabilities from our selection function as weights, i.e.,

wi = ̂continuationi . The resulting densities for precisely reported (i.e., not
as inequality) test statistics by different groups of sponsors are plotted in
SI Appendix, Fig. S4.

This procedure is similar in spirit to the weight-function approach used to
test for publication bias in meta-analyses (49, 50), but it allows the weights
to depend on more than one variable. The construction of counterfactual
distributions by weighted kernel-density estimation has also been used in
other strands of the economics literature, e.g., for the decomposition of
the effects of institutional and labor-market factors on the distribution of
wages (51).

Data Availability. A complete replication package of the econometric anal-
ysis presented in the paper, including all data files and our constructed
linking of phase II and phase III trials, is deposited at the Harvard Data-
verse at https://doi.org/10.7910/DVN/NBLYSW. The clinical trials data mainly
analyzed in the paper are freely available for download at http://aact.ctti-
clinicaltrials.org/.
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